Misteri Sebuah Bilangan

Misteri Bilangan Lubang Hitam : 123

Dalam astronomi dan fisika, kita mengenal adanya suatu fenomena alam yang sangat menarik yaitu lubang hitam (black hole). Lubang hitam adalah suatu entitas yang memiliki medan gravitasi yang sangat kuat sehingga setiap benda yang telah jatuh di wilayah horizon peristiwa (daerah di sekitar inti lubang hitam), tidak akan bisa kabur lagi. Bahkan radiasi elektromagnetik seperti cahaya pun tidak dapat melarikan diri, akibatnya lubang hitam menjadi “tidak kelihatan”.

Ternyata, dalam matematika juga ada fenomena unik yang mirip dengan fenomena lubang hitam yaitu bilangan lubang hitam. Bagaimana sebenarnya bilangan lubang hitam itu? Mari kita bermain-main sebentar dengan angka.

Coba pilih sesuka hati Anda sebuah bilangan asli (bilangan mulai dari 1 sampai tak hingga). Sebagai contoh, katakanlah 141.985. Kemudian hitunglah jumlah digit genap, digit ganjil, dan total digit bilangan tersebut. Dalam kasus ini, kita dapatkan 2 (dua buah digit genap), 4 (empat buah digit ganjil), dan 6 (enam adalah jumlah total digit). Lalu gunakan digit-digit ini (2, 4, dan 6) untuk membentuk bilangan berikutnya, yaitu 246.

Ulangi hitung jumlah digit genap, digit ganjil, dan total digit pada bilangan 246 ini. Kita dapatkan 3 (digit genap), 0 (digit ganjil), dan 3 (jumlah total digit), sehingga kita peroleh 303. Ulangi lagi hitung jumlah digit genap, ganjil, dan total digit pada bilangan 303. (Catatan: 0 adalah bilangan genap). Kita dapatkan 1, 2, 3 yang dapat dituliskan 123.

Jika kita mengulangi langkah di atas terhadap bilangan 123, kita akan dapatkan 123 lagi. Dengan demikian, bilangan 123 melalui proses ini adalah lubang hitam bagi seluruh bilangan lainnya. Semua bilangan di alam semesta akan ditarik menjadi bilangan 123 melalui proses ini, tak satu pun yang akan lolos.

Tapi benarkah semua bilangan akan menjadi 123? Sekarang mari kita coba suatu bilangan yang bernilai sangat besar, sebagai contoh katakanlah 122333444455555666666777777788888888999999999. Jumlah digit genap, ganjil, dan total adalah 20, 25, dan 45. Jadi, bilangan berikutnya adalah 202.545. Lakukan lagi iterasi (pengulangan), kita peroleh 4, 2, dan 6; jadi sekarang kita peroleh 426. Iterasi sekali lagi terhadap 426 akan menghasilkan 303 dan iterasi terakhir dari 303 akan diperoleh 123. Sampai pada titik ini, iterasi berapa kali pun terhadap 123 akan tetap diperoleh 123 lagi. Dengan demikian, 123 adalah titik absolut sang lubang hitam dalam dunia bilangan.

Namun, apakah mungkin saja ada suatu bilangan, terselip di antara rimba raya alam semesta bilangan yang jumlahnya tak terhingga ini, yang dapat lolos dari jeratan maut sang bilangan lubang hitam, sang 123 yang misterius ini?

http://www.forumsains.com

Matematika dan Bilangan Prima

Bilangan prima adalah dasar dari matematika, termasuk salah satu misteri alam semesta. Tidak pernah terbayangkan oleh manusia sebelumnya, sampai ditemukan bahwa bilangan prima juga merupakan dasar dari kehidupan alam, yang dengan usaha keras ingin dijelaskan oleh ilmu ini dalam sains. Pandangan orang umumnya mengatakan bahwa matematika hanyalah penemuan manusia biasa. Sebaliknya, beberapa pemikir masa lalu – Pythagoras, Plato, Cusanus, Kepler, Leibnitz, Newton, Euler, Gauss, termasuk para revolusioner abad ke-20, Planck, Einstein dan Sommerffeld – yakin bahwa keberadaan angka dan bentuk geometris merupakan konsep alam semesta dan konsep yang bebas (independent). Galileo sendiri beranggapan bahwa matematika adalah bahasa Tuhan ketika menulis alam semesta.

 

Bilangan Prima dan Rencana Penciptaan

Salah satu teka-teki lama yang belum sepenuhnya terpecahkan adalah bilangan prima. Bilangan prima adalah bilangan yang hanya dapat habis dibagi oleh bilangan itu sendiri dan angka 1. Angka 12 bukan merupakan bilangan prima, karena dapat habis dibagi oleh angka lainnya 2, 3, dan 4. Bilangan prima adalah 2, 3, 5, 7, 11, 13, …. dan seterusnya. Banyak bilangan prima tidak terhingga. Tidak peduli berapa banyak kita menghitung, pasti kita akan menemukan bilangan prima, walaupun mungkin makin jarang_ Hal ini menjadi teka-teki kita, jika kita ingat bilangan ini tidak dapat dibagi oleh angka lainnya. Salah satu hal yang menakjubkan, dalam era komputer kita memberikan kodetifikasi semua hal yang penting dan rahasia, di bank, asuransi, dan perhitungan-perhitungan peluru kendali, security system dengan enkripsi, dalam angka jutaan bilangan-bilangan yang tidak habis dibagi oleh angka lainnya. Ini diperlukan karena dengan penggunaan angka lain, kodetifikasi tadi dapat dengan mudah ditembus.

Fenomena inilah yang ditemukan ilmuwan dari Duesseldorf (Dr. Plichta), sehubungan dengan penciptaan alam, yaitu distribusi misterius bilangan prima. Para ilmuwan sudah lama percaya bahwa bilangan prima adalah bahasa universal yang dapat dimengerti oleh semua makhluk (spesies) berintelegensia tinggi, sebagai komunikasi dasar antarmereka. Bahasa ini penuh misteri karena berhubungan dengan perencanaan universal kosmos.

Bilangan lain yang perlu diketahui adalah sisa dari bilangan prima, yakni bilangan komposit, kecuali angka 1, yaitu 4, 6, 8, 9,10,12,14,15, …. dan seterusnya. Dengan kata lain, bilangan komposit adalah bilangan yang terdiri dari minimal dua faktor prima. Misalnya :

6 = 2 x 3 = 2 . 3
30 = 2 x 3 x 5 = 2 . 3 . 5
85 = 5 x 17 = 5 . 17

Selain itu, dikenal pula bilangan khusus, yang disebut prima kembar, yaitu bilangan prima yang angkanya berdekatan dengan selisih 2. Misalnya :

(3,5)
(5,7)
(11,13)
(17,19)

dan seterusnya.

Mayoritas ahli astrofisika juga percaya bahwa di alam semesta terdapat “kode kosmos” atau yang disebut cosmic code based on this order, yang dikenal juga sebagai Theory of Everything (TOE), yang artinya terdapat konstanta-konstanta alam semesta yang saling berhubungan berdasarkan perintah pendesain. Sekali perintah tersebut dapat dipecahkan, maka hal ini akan membuka pandangan sains lainnya yang berhubungan.

http://www.forumsains.com

Misteri Bilangan Nol

Ratusan tahun yang lalu, manusia hanya mengenal 9 lambang bilangan yakni 1, 2, 2, 3, 5, 6, 7, 8, dan 9. Kemudian, datang angka 0, sehingga jumlah lambang bilangan menjadi 10 buah. Tidak diketahui siapa pencipta bilangan 0, bukti sejarah hanya memperlihatkan bahwa bilangan 0 ditemukan pertama kali dalam zaman Mesir kuno. Waktu itu bilangan nol hanya sebagai lambang. Dalam zaman modern, angka nol digunakan tidak saja sebagai lambang, tetapi juga sebagai bilangan yang turut serta dalam operasi matematika. Kini, penggunaan bilangan nol telah menyusup jauh ke dalam sendi kehidupan manusia. Sistem berhitung tidak mungkin lagi mengabaikan kehadiran bilangan nol, sekalipun bilangan nol itu membuat kekacauan logika. Mari kita lihat.

 

Nol, penyebab komputer macet

Pelajaran tentang bilangan nol, dari sejak zaman dahulu sampai sekarang selalu menimbulkan kebingungan bagi para pelajar dan mahasiswa, bahkan masyarakat pengguna. Mengapa? Bukankah bilangan nol itu mewakili sesuatu yang tidak ada dan yang tidak ada itu ada, yakni nol. Siapa yang tidak bingung? Tiap kali bilangan nol muncul dalam pelajaran Matematika selalu ada ide yang aneh. Seperti ide jika sesuatu yang ada dikalikan dengan 0 maka menjadi tidak ada. Mungkinkah 5*0 menjadi tidak ada? (* adalah perkalian). Ide ini membuat orang frustrasi. Apakah nol ahli sulap?

Lebih parah lagi-tentu menambah bingung-mengapa 5+0=5 dan 5*0=5 juga? Memang demikian aturannya, karena nol dalam perkalian merupakan bilangan identitas yang sama dengan 1. Jadi 5*0=5*1. Tetapi, benar juga bahwa 5*0=0. Waw. Bagaimana dengan 5o=1, tetapi 50o=1 juga? Ya, sudahlah. Aturan lain tentang nol yang juga misterius adalah bahwa suatu bilangan jika dibagi nol tidak didefinisikan. Maksudnya, bilangan berapa pun yang tidak bisa dibagi dengan nol. Komputer yang canggih bagaimana pun akan mati mendadak jika tiba-tiba bertemu dengan pembagi angka nol. Komputer memang diperintahkan berhenti berpikir jika bertemu sang divisor nol.

 

Bilangan nol: tunawisma

Bilangan disusun berdasarkan hierarki menurut satu garis lurus. Pada titik awal adalah bilangan nol, kemudian bilangan 1, 2, dan seterusnya. Bilangan yang lebih besar di sebelah kanan dan bilangan yang lebih kecil di sebelah kiri. Semakin jauh ke kanan akan semakin besar bilangan itu. Berdasarkan derajat hierarki (dan birokrasi bilangan), seseorang jika berjalan dari titik 0 terus-menerus menuju angka yang lebih besar ke kanan akan sampai pada bilangan yang tidak terhingga. Tetapi, mungkin juga orang itu sampai pada titik 0 kembali. Bukankah dunia ini bulat? Mungkinkah? Bukankah Columbus mengatakan bahwa kalau ia berlayar terus-menerus ia akan sampai kembali ke Eropa?

Lain lagi. Jika seseorang berangkat dari nol, ia tidak mungkin sampai ke bilangan 4 tanpa melewati terlebih dahulu bilangan 1, 2, dan 3. Tetapi, yang lebih aneh adalah pertanyaan mungkinkan seseorang bisa berangkat dari titik nol? Jelas tidak bisa, karena bukankah titik nol sesuatu titik yang tidak ada? Aneh dan sulit dipercaya? Mari kita lihat lebih jauh.

Jika di antara dua bilangan atau antara dua buah titik terdapat sebuah ruas. Setiap bilangan mempunyai sebuah ruas. Jika ruas ini dipotong-potong kemudian titik lingkaran hitam dipindahkan ke tengah-tengah ruas, ternyata bilangan 0 tidak mempunyai ruas. Jadi, bilangan nol berada di awang-awang. Bilangan nol tidak mempunyai tempat tinggal alias tunawisma. Itulah sebabnya, mengapa bilangan nol harus menempel pada bilangan lain, misalnya, pada angka 1 membentuk bilangan 10, 100, 109, 10.403 dan sebagainya. Jadi, seseorang tidak pernah bisa berangkat dari angka nol menuju angka 4. Kita harus berangkat dari angka 1.

 

Mudah, tetapi salah

Guru meminta Ani menggambarkan sebuah garis geometrik dari persamaan 3x+7y = 25. Ani berpikir bahwa untuk mendapatkan garis itu diperlukan dua buah titik dari ujung ke ujung. Tetapi, setelah berhitung-hitung, ternyata cuma ada satu titik yang dilewati garis itu, yakni titik A(6, 1), untuk x=6 dan y=1. Sehingga Ani tidak bisa membuat garis itu. Sang guru mengingatkan supaya menggunakan bilangan nol. Ya, itulah jalan keluarnya. Pertama, berikan y=0 diperoleh x=(25-0)/3=8 (dibulatkan), merupakan titik pertama, B(8,0). Selanjutnya berikan x=0 diperoleh y=(25-3.0)/7=4 (dibulatkan), merupakan titik kedua C(0,4). Garis BC, adalah garis yang dicari. Namun, betapa kecewanya sang guru, karena garis itu tidak melalui titik A. Jadi, garis BC itu salah.

Ani membela diri bahwa kesalahan itu sangat kecil dan bisa diabaikan. Guru menyatakan bahwa bukan kecil besarnya kesalahan, tetapi manakah yang benar? Bukankah garis BC itu dapat dibuat melalui titik A? Kata guru, gunakan bilangan nol dengan cara yang benar. Bagaimana kita harus membantu Ani membuat garis yang benar itu? Mudah, kata konsultan Matematika. Mula-mula nilai 25 dalam 3x+7y harus diganti dengan hasil perkalian 3 dan 7 sehingga diperoleh 3x+7y=21.

Selanjutnya, dalam persamaan yang baru, berikan y=0 diperoleh x=21/3=7 (tanpa pembulatan) itulah titik pertama P(6,1). Kemudian berikan nilai x=0 diperoleh y=21/7 = 3 (tanpa pembulatan), itulah titik kedua Q(0, 3). Garis PQ adalah garis yang sejajar dengan garis yang dicari, yakni 3x+7y=25. Melalui titik A tarik garis sejajar dengan PQ diperoleh garis P1Q1. Nah, begitulah. Sang murid telah menemukan garis yang benar berkat bantuan bilangan nol.

Akan tetapi, sang guru masih sangat kecewa karena sebenarnya tidak ada satu garis pun yang benar. Bukankah dalam persamaan 3×1+7×2=25 hanya ada satu titik penyelesaian yakni titik A, yang berarti persamaan 3×1+7×2 itu hanya berbentuk sebuah titik? Bahkan pada persamaan 3×1+7×2=21 tidak ada sebuah titik pun yang berada dalam garis PQ. Oleh karena itu, garis PQ dalam sistem bilangan bulat, sebenarnya tidak ada. Aneh, bilangan nol telah menipu kita. Begitulah kenyataannya, sebuah persamaan tidak selalu berbentuk sebuah garis.

 

Bergerak, tetapi diam

Bilangan tidak hanya terdiri atas bilangan bulat, tetapi juga ada bilangan desimal antara lain dari 0,1; 0,01; 0,001; dan seterusnya sekuat-kuat kita bisa menyebutnya sampai sedemikian kecilnya. Karena sangat kecil tidak bisa lagi disebut atau tidak terhingga dan pada akhirnya dianggap nol saja. Tetapi, ide ini ternyata sempat membingungkan karena jika bilangan tidak terhingga kecilnya dianggap nol maka berarti nol adalah bilangan terkecil? Padahal, nol mewakili sesuatu yang tidak ada? Waw. Begitulah.

Berdasarkan konsep bilangan desimal dan kontinu, maka garis bilangan yang kita pakai ternyata tidak sesederhana itu karena antara dua bilangan selalu ada bilangan ke tiga. Jika seseorang melompat dari bilangan 1 ke bilangan 2, tetapi dengan syarat harus melompati terlebih dahulu ke bilangan desimal yang terdekat, bisakah? Berapakah bilangan desimal terdekat sebelum sampai ke bilangan 2? Bisa saja angka 1/2. Tetapi, anda tidak boleh melompati ke angka 1/2 karena masih ada bilangan yang lebih kecil, yakni 1/4. Seterusnya selalu ada bilangan yang lebih dekat… yakni 0,1 lalu ada 0,01, 0,001, …, 0,000001. demikian seterusnya, sehingga pada akhirnya bilangan yang paling dekat dengan angka 1 adalah bilangan yang demikian kecilnya sehingga dianggap saja nol. Karena bilangan terdekat adalah nol alias tidak ada, maka Anda tidak pernah bisa melompat ke bilangan 2?

http://www.forumsains.com/index.php?page=misteri-bilangan-nol

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s